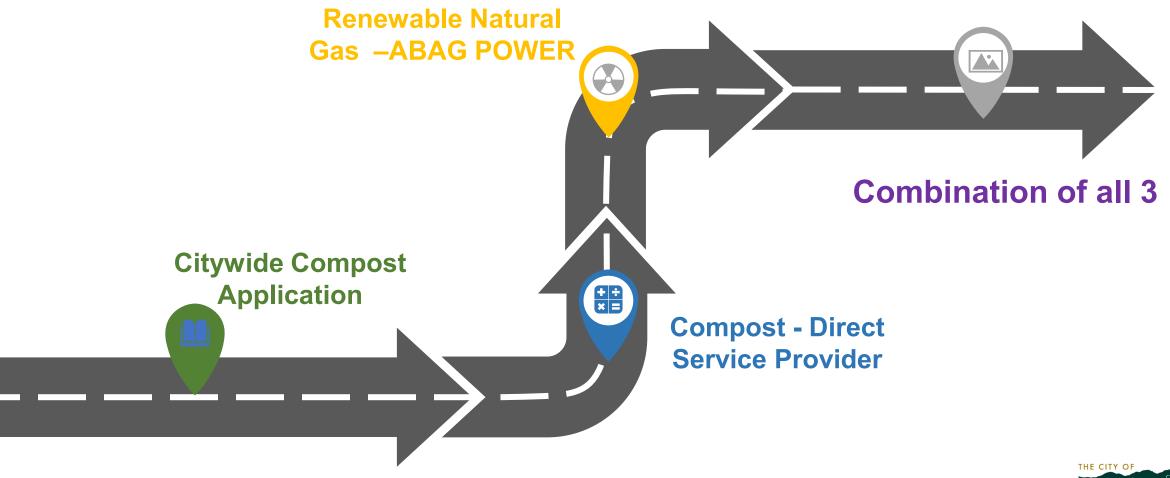
SB 1383 Procurement Cost-Benefit Analysis

ABAG POWER Board Meeting October 26, 2023

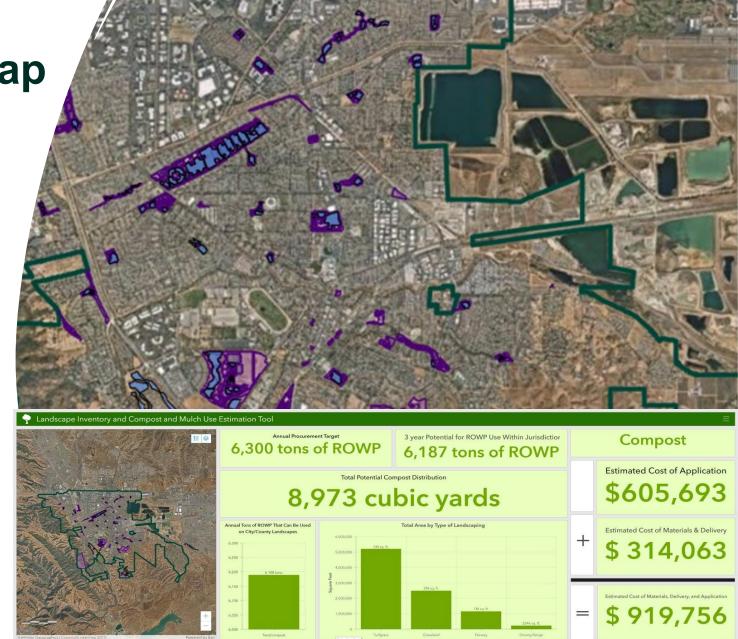


Rincon Consultants, Inc



Background

- SB 1383 requires cities procure 0.08 tons of recovered organic waste products per person annually
- Recovered organic waste products:
 - Compost
 - Mulch
 - Renewable gas (RNG)
 - Electricity from biomass conversion
- City evaluation of procurement options that support CAP reduction targets


Approach to SB1383 Implementation

Compost Application Landscape Inventory Map

- Target is 6270 Tons of ROWP
- StopWaste created the initial GIS mapping tool
- We refined the tool
- This mapping included turfgrass, tree wells, planters, undeveloped open space parcels, and the location of our Compost Hub

Direct Service Provider - Agromin

Pleasanton's Impact Visualized

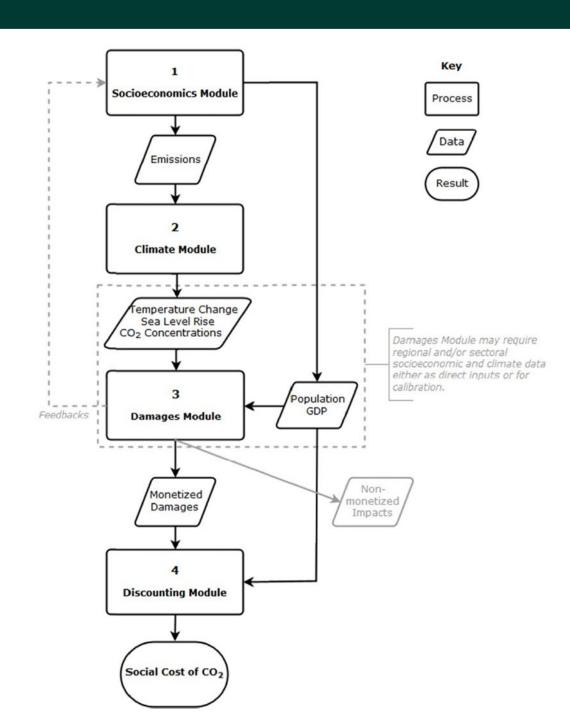
- 1091 tons of organic waste repurposed
- 480 CO2 emissions prevented
- Relative yearly equivalent of removing 94 vehicles off the road.

RNG: Green House Gas (GHG) Benefit

- RNG is a "drop in" fuel replacement for natural gas
- Combustion of natural gas release CO2, CH4 and N2O
- RNG is biogenic i.e. CO2 released during combustion does not contribute to atmospheric emissions
- RNG procurement contributed to GHG emission reductions for City CAP

Source	lbs CO ₂ /therm ^{1,3}	CO ₂ GWP ³	lbs CH₄/therm²	CH ₄ GWP	lbs N ₂ O/therm²	N ₂ O GWP	MT CO,e/therm ^{3,4}	
Natural Gas	1.17E+01	1	2.27E-04	25	4.53E-06	298	5.31E-03	
Renewable Natural Gas ³	1.17E+01	0	2.27E-04	25	4.53E-06	298	3.18E-06	-

Notes: MT CO₂e = metric tons carbon dioxide equivalaents


- 1. Reported by PG&E in their data delivery forms and utilized in City of Pleasanton's inventory
- 2. Obtained from the US Community Protocol and utilized in City of Pleasanton's inventory
- 3. Combustion of renewable natural gas generates biogenic CO_2 which is considered carbon neutral. The GWP for biogenic CO_2 is considered o.
- 4. MT CO₂e is calculated by multiplying the GHG by the GWP

99.9% reduction per therm!

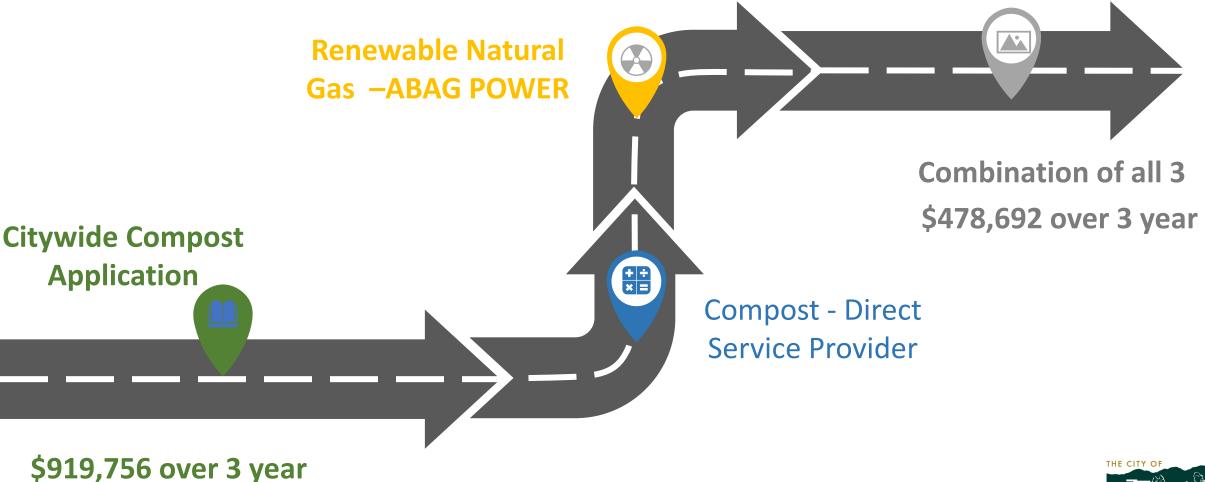
Social Cost of Carbon

- The monetary value of net harm/economic damages to society from adding one extra metric ton of CO2
- Used in policy/regulatory impact analysis
- Cost of enacting policy now vs cost of climate impact later for no action
- Set by the EPA
- \$51/MT CO2 to \$190/ MT CO2
- Increases related to latest research

RNG: Cost Considerations

Cost of NG + Cost of RNG - Social Cost of Carbon

Percent RNG Replacement	Natural Gas Cost ¹	RNG Cost ²	Social Cost of Avoided Emissions ³	Total Cost for gas procurement ⁴	Cost Difference ⁵	Cost of GHG Savings (MTCO ₂) ⁶
100%	\$0	\$425,845	\$122,679	\$303,166	\$86,048	
75%	\$54,279	\$319,384	\$92,009	\$281,654	\$64,536	¢122.27
50%	\$108,559	\$212,923	\$61,340	\$260,142	\$43,024	\$133.27
25%	\$162,838	\$106,461	\$30,670	\$238,630	\$21,512	


Notes: MT CO2e = metric tons carbon dioxide equivalaents

- 1. Cost of natural gas is determined by multiplying the quantify of procured natural gas in Table 2 by the cost for natural gas, \$1.78 per therm.
- 2. Cost of RNG is determined by multiplying the quantify of procured RNG in Table 2 by the cost for RNG, \$3.50 per therm.
- 3. The social cost of avoided non-biogenic emissions from natural gas are calculated by multiplying the avoided natural gas CO₂ emissions by the EPA revised social cost of carbon for emissions year 2020, \$190 per MT CO₂.
- 4. Total cost for gas procurement is calculated by adding the cost for natural gas and RNG procurement minus the social cost of carbon.
- 5. The cost difference is calculated by subtracting the current cost for 121,665 therms of natural gas (\$217,118) from the calculated total cost for procurement of different amounts of RNG to replace the natural gas.
- 6. Cost of GHG savings is calculated as the cost difference divided by the total avoided CO2 emissions in Table 2.

^{*}Not considered: cost of violation of SB 1383 procurement requirement, cost comparison of alternative procurement options, cost benefit of reducing GHG emissions as part of CAP

Save on Staff-Time and Cost

QUESTIONS?

Thank You!